
Exploring NeRF: Final Project Report

Yi-ting (Taryn) Chiang, Lucas Martinez, and Oona Wood

Abstract: This project experiments with simple methods to improve the results generated
by the Neural Radiance Fields (NeRF) Model architecture, focusing on some architectural
modifications, diverse loss functions, and image pre-processing techniques. Also, we eval-
uate the impact of these adjustments on the accuracy, using SSIM, PSNR, and LPIPS indi-
cators in order to evaluate the similarity between our outputs and the original target image.

1. Introduction

The purpose of this project is to expand upon the research around NeRFs. In particular, this project chose
to build on the research in what is largely considered the ”original” NeRF paper ”NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis” [4]. In this effort, we explored potential improvements through model
modifications and image preprocessing. Our goals include improving the quality of 3D scene reconstructions and
understanding how different loss functions, model architectures, and contrast adjustments impact the results.

1.1. Datasets

Due to hardware limitations, capturing and creating a new dataset was not feasible. However, utilizing the
synthetic dataset provided by the original NeRF authors instead offered a controlled environment to assess our
modifications against a known baseline, ensuring that improvements can be attributed to our changes rather than
dataset variability.

1.2. Literature Review

A targeted literature review was conducted, focusing on papers that cite the original NeRF work. From this
review, two primary avenues for enhancing NeRF emerged: model modifications and image preprocessing [1, 2,
3, 5]. Each of these areas presented several opportunities to potentially improve the quality and efficiency of 3D
scene reconstruction.

2. Related Work: NeRF

NeRF representation is an innovative approach to 3D scene reconstruction that uses deep learning in a unique
way to synthesize novel views from a set of 2D images. At its core, NeRF represents a scene as a continuous 3D
function, parameterized by a neural network, which learns to predict the color and density at any point in the 3D
space given an input view direction and spatial coordinates. In essence, the neural network consists of 8 fully-
connected layers (using ReLU activations and 256 channels per layer), and the MSE as its loss function. Here’s
how NeRF works:

1. Input Data: NeRF takes as input multiple images of a scene captured from different viewpoints, along with
the camera parameters associated with each image. In other words, the neural network that takes a 5D input
(spatial location (x, y, z) and viewing direction (θ , ϕ)).

2. Training: During training, NeRF uses the input images to learn a mapping function that predicts the color
and density of any point in the 3D space, given the 3D coordinates and the camera view direction.

3. Rendering: After training, NeRF can synthesize new, unseen views of the scene by querying this mapping
function and rendering the 3D scene from any virtual camera perspective. It does this by sampling rays
through the scene and using volume rendering techniques to accumulate the predicted color and density
along each ray.

NeRF’s ability to accurately reconstruct a continuous volumetric representation allows it to generate highly
detailed and realistic images, even from limited input data. This has broad applications in computer graphics,
virtual reality, and other fields that require realistic 3D scene rendering.

1



3. Our Approach: NeRF Research and Experimentation

3.1. Model Modification

3.1.1. Different Loss Functions:

The original NeRF model works with the MSE loss function. To assess the impact of loss functions on the
quality of the final 3D reconstructions, we experimented with the following alternatives:

1. Huber Loss: A robust loss function that balances the sensitivity to outliers and the need for a smooth
gradient. It’s effective for tasks where the presence of outliers can significantly impact the performance of
the model.

2. Log Cosh Loss: Works mostly like MSE, but will not be so strongly affected by the occasional wildly
incorrect prediction, hence it might offer improved convergence properties.

3. Structural Similarity Index (SSIM) Loss: A perceptual loss function that assesses the structural similarity
between two images, providing a measure closer to human perception. The loss function is represented as
1−SSIM(x,y)

3.2. Model Architectures and Distillation:
In order to understand how the model prediction changes, we experimented with the following variations of

the model architecture and hyperparameters:

1. Model with 2 layers, 128 filters, trained for 10,000 and 100,000 iterations

2. Model with 8 layers, 256 filters, trained for 10,000 and 100,000 iterations

Also, we experimented with the distillation technique, expecting it would enhance the prediction quality of a
smaller model. We used a model with 2 layers, 128 filters and trained it for 10,000 iterations with the following
models as teacher:

1. Teacher model: 8 layers, 256 filters, previously trained for 10,000 iterations (later referenced as ’Teacher
10k’)

2. Teacher model: 8 layers, 256 filters, previously trained for 100,000 iterations (later referenced as ’Teacher
100k’)

3.3. Image Preprocessing
Image preprocessing was considered as another potential lever for enhancing reconstruction quality. We ad-

justed image contrast using the following formula:

enhanced image = original image∗gain+bias

to enhance visibility in darker regions and bring out more detail. This adjustment was hypothesized to improve
NeRF’s ability to reconstruct fine details and maintain structural consistency.

3.3.1. Pipeline

Fig. 1. The original NeRF model pipeline.

2



Fig. 2. The new pipeline with contrast adjustment.

3.3.2. Image Contrast Formula

enhanced image = original image∗gain+bias

Gain Adjustment:

• Increasing the Gain: Amplifies the difference between higher and lower pixel values. This results in lighter
areas becoming significantly brighter, while darker areas become relatively darker.

• Decreasing the Gain: Reduces the difference between light and dark areas, lowering the contrast and cre-
ating a more uniform appearance.

Bias Adjustment:

• Adding a Positive Value: Shifts all pixel values upward, making the overall image appear brighter.

• Adding a Negative Value: Shifts pixel values downward, darkening the image and enhancing shadows if
the gain is adjusted appropriately.

Fig. 3. Effect of changing gain on image contrast.

Fig. 4. Effect of changing bias with same gain on image contrast.

4. Results

Below, we used the SSIM, PSNR, and LPIPS index to compare our results with the original image.

4.1. Results with Different Loss Functions

3



Fig. 5. Results from implementing different loss functions.

Table 1. We report PSNR (higher is better), SSIM (higher is better) and LPIPS (lower is better) for
the loss functions tested. MSE outperforms the others in 2 of the 3 indexes used.

MSE Huber-Loss Log-Cosh SSIM loss
SSIM 0.833 0.829 0.831 0.803
PSNR 34.05 33.96 34.02 33.92
LPIPS 0.132 0.119 0.119 0.150

4.2. Results with Different Model Architectures and Distillation

Table 2. Training time, RAM usage, and loss (MSE) across different architectures and distillation.

2 Layers & 128 Filters 8 Layers & 256 Filters Distillation
10k iters. 100k iters. 10k iters. 100k iters. Teacher 10k Teacher 100k

Training time (hs) 00:38:38 06:43:44 01:50:41 20:34:38 06:50:22 06:52:01
RAM usage 9.6 GB 9.6 GB 38 GB 38 GB 9.6 GB 9.6 GB
Loss (MSE) 0.0039 0.0016 0.0024 0.0010 0.0037 0.0015

Table 3. Performance comparison of different model architecture and distillation

2 Layers & 128 Filters 8 Layers & 256 Filters Distillation
10k iters. 100k iters. 10k iters. 100k iters. Teacher 10k Teacher 100k

SSIM 0.833 0.903 0.878 0.948 0.840 0.904
PSNR 34.05 35.06 34.63 36.26 34.17 35.06
LPIPS 0.132 0.080 0.090 0.030 0.130 0.080

4



4.3. Result with our Image Contrast

Fig. 6. The dataset used for training and its corresponding results.

Table 4. Performance comparison of different contrast levels

Original Bias=1.5 Gain=0.3 Bias=1.5 Gain=0.6 Bias=1.5 Gain=1.2 Bias=1.5 Gain=2
SSIM 0.853 0.850 0.847 0.842 0.764
PSNR 32.83 32.86 32.81 32.83 32.57
LPIPS 0.090 0.102 0.099 0.096 0.174

5. Limitations

1. Resource Constraints: The NeRF model is resource-intensive, so we limited training iterations to 10,000 in
some experiments. For optimal results, 300,000 iterations would be needed, requiring approximately three
days of training per experiment. With more resources, parallelism could be used during training to expedite
the process.

2. Dataset Bias: The project relied on a synthetic, well-constructed dataset, which may not accurately reflect
less-structured, real-world data. Therefore, the model might not perform similarly in other environments.

3. Generalization Issues:The results may not generalize well to other datasets due to differences in data
quality, structure, or size. Thus, the limited dataset scope could affect the model’s applicability to other
scenarios.

6. Conclusion

Our experiments reveal several important findings about optimizing the NeRF model. Regarding the impact
of loss functions, different loss functions lead to significant visual differences in the final output. Among them,
Mean Squared Error produced the best overall results. Additionally, we found NeRF to be resource-intensive dur-
ing training. Training the NeRF model is demanding in terms of both time and hardware resources. The 8-layer
models required around 38 GB of GPU RAM and took over 20 hours for 100,000 iterations. Which is not surpris-
ing given the ongoing research efforts to compress the input data. Effectiveness of Distillation: Model distillation
proved effective with NeRF, yielding slightly improved results over training smaller models directly. We also
found insights regarding training progression: rapid learning was observed in the initial 10,000 to 20,000 itera-
tions, but progress significantly slowed afterward. Finally, in terms of image contrast adjustments, we found out
that using contrast-enhanced images did not lead to significant improvements in reconstruction quality.Excessive
brightness could even worsen results.

5



7. References

References

[1] Matteo Bonotto et al. CombiNeRF: A Combination of Regularization Techniques for Few-Shot Neural Radi-
ance Field View Synthesis. 2024. arXiv: 2403.14412 [cs.CV].

[2] Junyi Cao et al. Lightning NeRF: Efficient Hybrid Scene Representation for Autonomous Driving. 2024.
arXiv: 2403.05907 [cs.CV].

[3] Yunhao Li et al. SCINeRF: Neural Radiance Fields from a Snapshot Compressive Image. 2024. arXiv:
2403.20018 [eess.IV].

[4] Ben Mildenhall et al. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. 2020. arXiv:
2003.08934 [cs.CV].

[5] Thomas Müller et al. “Instant neural graphics primitives with a multiresolution hash encoding”. In: ACM
Trans. on Graph. 41.4 (July 2022), pp. 1–15. ISSN: 1557-7368. DOI: 10.1145/3528223.3530127.
URL: http://dx.doi.org/10.1145/3528223.3530127.

8. Author Contributions

The individual contributions to this project are as follows:

• Yi-ting Chiang: Contributed to developing the research design, data collection, image preprocessing re-
search, and manuscript writing.

• Lucas Martinez: Contributed to model modification, including testing different loss functions, experiment-
ing with model architectures and distillation, and manuscript writing.

• Oona Wood: Contributed to the research idea, literature review and manuscript writing.

6

https://arxiv.org/abs/2403.14412
https://arxiv.org/abs/2403.05907
https://arxiv.org/abs/2403.20018
https://arxiv.org/abs/2003.08934
https://doi.org/10.1145/3528223.3530127
http://dx.doi.org/10.1145/3528223.3530127

