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Abstract—This work explores enhancements to state-space
models (SSMs) for computer vision tasks, specifically through
experiments with Vision Mamba (Vim) and MambaVision. For
Vim, we explored several enhancements to improve accuracy
and efficiency. We integrated Squeeze-and-Excitation blocks to
recalibrate channel-wise feature responses, replaced standard
convolutions with MobileNetV2-inspired depthwise convolutions
to reduce computational overhead, and applied pruning tech-
niques including: dynamic pruning Iterative Magnitude Pruning,
the Early-Bird Lottery Ticket Hypothesis, and gradient-based
pruning. For MambaVision, our contributions are twofold: (1)
integrating a sliding window attention (SWA) mechanism to
expand the model’s receptive field for high-resolution images and
(2) replacing the default S6 kernel with S4 and S5 kernels, which
have shown superior performance in continuous signal processing
tasks. These approaches aim to enhance the capacity of SSMs in
vision tasks that demand large receptive fields and continuous-
like signal processing.

Note: all code and resources used for this work are publicly
available in our GitHub repository 1, ensuring transparency
and reproducibility.

I. INTRODUCTION

State space models (SSMs) have recently gained traction
in computer vision for their ability to model long-range
dependencies in sequential data [1], [2]. Vision Mamba (Vim)
[3] serves as an initial exploration into integrating SSMs for
visual data processing. Vim employs bidirectional state-space
models to process input patches efficiently while maintaining a
lightweight architecture. Specifically, Vim consists of Conv1D
layers, state-space models (SSMs), and a gating mechanism
to extract features in both forward and backward directions,
combined with a residual connection for stable learning. The
Vision Mamba block just described is illustrated in Figure 1,
and forms the core of Vim’s architecture.

To evaluate Vision Mamba, we performed the following
experiments:

• Squeeze-and-Excitation (SE) [4] Integration: The SE
block was integrated into Vim to recalibrate channel-wise
feature responses. While accuracy decreased slightly due
to overfitting, it demonstrated the SE block’s capacity to
enhance feature representation.

• MobileNetV2-Inspired Depthwise Convolutions [5]:
Replacing standard convolutions with depthwise convo-

1GitHub repository for this project: https://github.com/rdaggs/vim ssm
cv24

lutions reduced parameter count while maintaining per-
formance, showcasing Vim’s efficiency.

• Sparse Subnetwork Exploration: Techniques such as
Dynamic Pruning with Cosine Scheduler, Iterative Mag-
nitude Pruning (IMP) [6], Gradient Pruning, and Early-
Bird Lottery Ticket Hypothesis [7] were applied to iden-
tify sparse subnetworks within Vim.

Fig. 1. The Vision Mamba Encoder Block (VisionEncoderMambaBlock)

While Vision Mamba provided a strong foundation for
efficient vision modeling, its performance highlighted ar-
eas for improvement, particularly in handling larger datasets
and high-resolution inputs. Building on this foundation, Ali
Hatamizadeh and Jan Kautz introduced MambaVision [8],
which employs a hybrid Vision Transformer [9] and Mamba
[1] based architecture, and has achieved state-of-the-art per-
formance in large-scale image classification tasks, particularly
on datasets like ImageNet. However, further exploration is
necessary to improve the model’s handling of high-resolution
inputs and continuous signal-like images.

We propose two modifications to MambaVision to address
these gaps:

1) Sliding Window Attention (SWA): Inspired by Samba,
a model that improves context length and perplexity
in language modeling through adding sliding window
attention (SWA) to Mamba, we hypothesize that SWA
will increase MambaVision’s receptive field. This en-
hancement could be particularly effective in tasks that
require processing large, high-resolution images, such as
medical microscopy and pathology.

2) Registers: Registers performed well in [10] so we want
to experiment and see if they also perform well with
MambaVision.

3) Relative Atention: Relative Attention as proposed by
[11] merges the strengths of convolutions (translational

https://github.com/rdaggs/vim_ssm_cv24
https://github.com/rdaggs/vim_ssm_cv24
https://github.com/rdaggs/vim_ssm_cv24


equivariance) with strengths of self-attention (global
receptive field and input independent weighting) to im-
prove generalisation across all dataset sizes. We aim to
use this in MambaVision to improve its generalisation
capability on smaller datasets like CIFAR100.

By building upon Vim and extending MambaVision with
these modifications, we aim to explore how these models
can be further optimized for vision tasks. Our experiments
focus on enhancing accuracy, efficiency, and generalization.
The following sections provide a detailed description of our
methods, experimental results, and insights gained from these
explorations.

II. RELATED WORK

Fig. 2. Mamba Overview: Structured SSMs independently map each channel
(e.g. D = 5) of an input x to output y through a higher dimensional latent
state h (e.g. N = 4). Prior SSMs avoid materializing this large effective state
(DN , times batch size B and sequence length L) through clever alternate
computation paths requiring time-invariance: the (∆, A,B,C) parameters are
constant across time. Our selection mechanism adds back input-dependent
dynamics, which also requires a careful hardware-aware algorithm to only
materialize the expanded states in more efficient levels of the GPU memory
hierarchy.

Fig. 3. The S4 kernel combines recurrent state-space modeling with
convolution. In the recurrent view, the hidden state evolves as u(t + 1) =
Au(t) + Bx(t), and the output is y(t) = Cu(t). The convolution kernel
computes the state evolution using the matrix exponential eA∆t and is given
by sum(V ·BCT (e∆tA)/A), capturing long-range dependencies efficiently.
Legendre polynomials are used as the basis functions for diagonalizing A

A. History of State Space Models:

State Space Models (SSMs) have long been explored for
sequence modeling due to their mathematical ability to capture
long-range dependencies, but early models faced scalability
issues in terms of computation and memory for very long
sequences. The Structured State Space model (S4) [2]. intro-
duced a breakthrough by parameterizing the state matrix A
with a low-rank correction, making it computationally efficient
through the reduction to a Cauchy kernel. They achieve this

efficiency by restricting the state matrix A to a specific basis
function, such as Legendre polynomials or sinusoidal func-
tions, which allows the model to approximate the sequence
history in a compact and computationally tractable manner.
This enabled S4 to excel on tasks requiring long-range depen-
dencies, setting new benchmarks across a variety of domains,
most notable of which is the Long Range Arena benchmark
[12], which were a set of benchmarks modeling long-range
sequences varying from 1K to 16K tokens, dominated mostly
by transformers up till that point.

Building on this, [13] developed the S5: Simplified State
Space Layers for Sequence Modeling. They enhanced the
SSM approach in S4 by using multi-input, multi-output mod-
els, while retaining S4’s efficiency through parallelization,
achieving strong results in long-sequence tasks. The S5 also
formulated a simpler formulation that could be computed
without the use of FFT and Legendre polynomials as was
required in S4.

Most recently, [1] prposed Mamba with S6, addressing
SSM limitations in content-based reasoning via a novel ”se-
lection mechanism”. This innovation combined with efficient
hardware-aware algorithms led to state-of-the-art performance
on tasks across various modalities, rivaling Transformers in
both speed and accuracy on long sequences. This model boasts
linear time complexity and either surpasses or matches the per-
formance of Transformers in various language modeling tasks.
Mamba’s key innovation lies in a unique selection mechanism
that allows for efficient processing of long sequences, while
also taking into account the specific characteristics of the GPU
hardware for efficient inference and training. Together, these
advances mark a significant evolution in the practical use of
SSMs for sequence modeling.

S4ND [14] pioneered the first successful application of State
Space Models (SSMs) in Computer Vision. This was achieved
by extending the one-dimensional S4 kernel to N dimensions
through an outer product operation between N 1-Dimensional
S4 kernels. Furthermore, by constraining the matrix A to co-
efficients of sinusoidal basis functions, the authors effectively
implemented a running Fourier Transform on the image. This
innovative approach enabled S4ND to match the accuracy of
ConvNext by simply substituting its convolutional blocks with
S4ND kernels. Notably, when applied to video analysis, S4ND
surpassed the performance of an inflated 3D ConvNeXt model
by 4% on the HMDB-51 activity classification benchmark.

[8] introduced a novel hybrid vision backbone called
MambaVision, that integrates the Mamba architecture with
Vision Transformers (ViT) to enhance visual feature modeling.
By incorporating self-attention blocks in the final layers,
MambaVision effectively captures long-range spatial depen-
dencies, while a novel mixer block with a symmetric path
further improves global context modeling. Their hierarchical
MambaVision models achieve State-of-the-Art (SOTA) perfor-
mance in image classification on the ImageNet-1K dataset and
outperform comparable backbones in object detection, instance
segmentation, and semantic segmentation on the MS COCO
and ADE20K datasets.



Samba [15] demonstrated that hybrid architectures com-
bining Mamba with Sliding Window Attention (SWA) can
improve memory recall and context length, particularly in
language models. Given the structural similarities between text
and high-resolution image data in terms of spatial relation-
ships, there is a strong motivation to apply SWA in vision
models to handle large image resolutions.

The Mamba model has introduced a novel approach to
SSMs by utilizing the S6, which is equipped with a selec-
tion mechanism that excels in handling discrete-time data,
particularly text-based tasks. However, the authors noted a
limitation of S6, specifically that S4 and S5 were shown to
have superior performance in continuous-time signal tasks.
They demonstrated this with a benchmark on audio processing
task where Mamba-S4 outpeformed the Mamba-S6. The paper
attributes this to the ”No Free Lunch” theorem and that
the inductive biases of S4/S5 allow it to better adapt to
continuous-time signals like audio whereas S6 adapts better to
discrete-time signals like text with its ”selection mechanism”.
This shows the trade-offs between continuous and discrete
time modeling in SSMs. Continuous-time data such as audio
benefits from SSMs like S4 and S5, while discrete-time data
such as text sees improved performance with S6’s ”selection
mechanism”. This raises the question of whether images, often
considered continuous-time signals in 2-Dimensions, could
similarly benefit from S4/S5. We would like to explore this
nuance in our work, which remains underexplored in the
context of computer vision.

B. History of Mamba based Architectures for Vision

Mamba-based architectures have been explored for vision
tasks with various modifications to enhance global context
understanding and computational efficiency. Vim or Vision-
Mamba [3] proposed a bidirectional SSM-based framework to
process tokens in forward and backward directions, enhancing
spatial understanding by leveraging more global context.

EfficientVMamba [16] employs an atrous-based selective
scan with skip sampling, combining hierarchical SSM and
CNN blocks. SSMs process higher-resolution inputs for global
context, while CNNs handle lower resolutions.

VMamba [17] introduces a Cross-Scan Module (CSM)
utilizing a four-way selective scan approach to expand the
global receptive field and capture surrounding token informa-
tion. Additional architectural adaptations, such as depth-wise
convolutions and a hierarchical structure, enhance vision task
suitability.

Additionally, register tokens [10], originally introduced in
[18], have been found effective in Mamba-based architectures.

C. Self-Attention Variants for Computer Vision

Transformer-based architectures have become a cornerstone
in computer vision research, with significant developments in
hybrid and hierarchical designs. The Vision Transformer (ViT)
[19] pioneered the use of pure attention mechanisms in vision
tasks, demonstrating remarkable performance on large datasets
but requiring extensive pretraining due to its lack of inductive

biases. Swin Transformer [20] addressed these limitations by
introducing a hierarchical design with shifted windows for
localized attention, enabling scalability to dense prediction
tasks while maintaining computational efficiency. CoAtNet
[11] further reduced the requirement of extensive pertaining
and bridged the generalisation gap by combining convolutional
and attention mechanisms by vertically stacking depthwise
convolutions and attention layers, as well as utilising a variant
of relative attention, improved generalization and efficiency.

III. METHODS

In this section we outline the methodologies employed to
enhance the performance and efficiency of computer vision
models within the Mamba framework. Our approach leverages
advanced pruning techniques, lightweight architectures, and
state-of-the-art feature extraction mechanisms to address the
challenges of computational complexity and resource con-
straints in vision tasks. We categorize our methods into two
primary experimental pipelines: Vision Mamba and Mamba
Vision, each focusing on distinct aspects of architectural
optimization and integration.

A. Vision Mamba

Vision Mamba (Vim) [3] redefines visual representation
learning by utilizing state space models (SSMs) to process
images as sequential data. Unlike traditional Transformers,
Vim replaces self-attention with bidirectional SSMs, achieving
efficient global context modeling while significantly reducing
computational and memory costs.

To handle spatial information, Vim incorporates position
embeddings and processes images by splitting them into
patches, projecting these patches into token sequences, and us-
ing bidirectional SSMs to extract features. This design enables
Vim to excel in dense prediction tasks such as segmentation
and object detection while maintaining scalability for high-
resolution images.

The following subsections detail the key techniques we
experimented with to improve Vision Mamba’s performance
during our exploration.

1) Squeeze and Excitation: The Squeeze-and-Excitation
(SE) block introduces an innovative mechanism to enhance
the representational power of convolutional neural networks
(CNNs) by explicitly modeling the interdependencies between
feature channels [4]. Unlike traditional approaches that focus
on spatial correlations, the SE block focuses on channel-
wise relationships. The mechanism operates in two main
stages: squeeze, which uses global average pooling to encode
the global spatial information into a channel descriptor, and
excitation, which applies a gating mechanism to adaptively
recalibrate the channel responses. This recalibration allows the
network to selectively emphasize informative channels while
suppressing less relevant ones.

The SE block can be seamlessly integrated into existing
architectures with minimal computational overhead. In our
case, for Vim, we introduced this block at the end of the



forward pass; more specifically, at the end of the VisionEnco-
derMambaBlock — a core building block in Vim that applies
Mamba-based operations for visual feature extraction — just
before the residual connection, to recalibrate channel-wise
feature responses, as seen in Figure 4

Fig. 4. VisionEncoderMambaBlock with Squeeze and Excitation integrated

The SE architecture, demonstrated using Inception and
Residual modules as examples, is illustrated in Figure 5. These
examples are provided to help the reader understand the inner
workings and design principles of the SE block. Note that the
Inception and Residual modules themselves were not directly
used in this work.

Fig. 5. Demonstration of SE block integration using the Inception and
Residual modules as examples. These serve to illustrate the SE block’s
architecture and functionality.

Its application has demonstrated consistent performance
improvements across various vision tasks. Their effectiveness
was validated in the ILSVRC 2017 competition [4], where
SE networks achieved state-of-the-art results, outperforming
previous architectures such as ResNet.

2) MobileNetV2: MobileNetV2 [5] builds upon its prede-
cessor, MobileNetV1 [21], with a novel architectural innova-
tion: the inverted residual structure with linear bottlenecks,
designed to balance computational efficiency with high ac-
curacy. This architecture is particularly optimized for mobile
and resource-constrained environments, addressing the need
for lightweight yet effective deep learning models. A key
component of MobileNetV2 is its use of depthwise separable
convolutions, which process high-dimensional feature maps
with minimal computational overhead. Additionally, the intro-
duction of linear bottlenecks eliminates non-linear transforma-
tions in the narrow layers, preserving critical low-dimensional
representations and preventing information loss. By combining
these techniques, MobileNetV2 achieves an impressive trade-
off between accuracy and computational cost, making it well-

suited for tasks such as image classification, object detection,
and semantic segmentation on mobile devices and embedded
systems.

3) Dynamic Pruning with Cosine Scheduler: Dynamic
pruning is a technique that iteratively reduces the number of
active parameters in a neural network during training, focusing
computational resources on the most impactful connections.
This approach dynamically adjusts the sparsity of the model,
allowing it to maintain competitive performance while sig-
nificantly reducing memory and computational requirements.
By progressively pruning less influential weights, dynamic
pruning encourages the network to learn robust representations
in a more efficient manner.

The integration of a cosine scheduler further enhances this
process by controlling the pruning rate throughout the training
cycle. Initially, fewer weights are pruned to allow the network
to stabilize, and the rate of pruning gradually increases follow-
ing a cosine decay pattern. This smooth transition ensures that
the model retains important features during the early stages of
training, while effectively reducing redundancy in later stages.

To preserve critical network components, pruning was
weakened in key layers, such as the input first layer and the
output head. Specifically, these layers were pruned at 50%
of the calculated sparsity level to ensure their integrity while
the remaining layers followed the full sparsity schedule. This
selective pruning strategy minimizes potential disruptions to
the network’s core functionality.

4) Iterative Magnitude Pruning: Identifying the winning
ticket is particularly important for heavyweight models such
as the examples explored in our experiment while being ideal
for resource-constrained environments. IMP [6] is a structured
pruning method that works by repeatedly removing a percent-
age of the network’s smallest-magnitude weights—those that
contribute least to the model’s output, to then retraini the re-
maining weights to recover performance. This process exploits
the idea that some weights in overparameterized networks
are redundant and can be safely removed without significant
accuracy loss. By iteratively pruning and fine-tuning, IMP
identifies a smaller and far more computationally efficient
subnetwork that retains the original model’s performance,
otherwise known as the winning lottery ticket. The iterative
structure is designed to dynamically account for sparsity, but
we chose to assert the sparsity value on a more aggressive
schedule at

prune intensity = prune intensity + p · 0.04 (1)

where prune intensity represents the current sparsity level of
the model, p is a scaling factor (e.g., pruning iteration index),
and 0.04 is a fixed increment controlling the rate of sparsity
increase. This dynamic rule allows for a gradual increase in
pruning intensity. This approach is particularly valuable for
applications like image classification or object detection on
mobile devices, where computational and memory efficiency
are critical. IMP and its ability to target a given sparsity
for deploying lightweight deep learning models is particularly
useful in combatting the intense compute that is required with



Fig. 6. GMambaVision: Generalized MambaVision incorporating convolutional layers, mixer blocks, and self-attention variants.

even the smaller versions of vision mamba.
5) Early-Bird Lottery Ticket Hypothesis: The objective of

the Early-Bird Lottery Ticket (EBLT) hypothesis is adjacent
to Iterative Magnitude Pruning and also a structured pruning
method. EBLT [7] leverages a similar principle of the lottery
ticket hypothesis but addresses it in a strikingly different way
where we aim to uncover the winning ticket at a very early
training stage. The hypothesis asserts that the emergent key
patterns within the network can be uncovered in one of the
first 6 epochs. The process involves training a network and
inviting this search through mask distance

Mask Distance = ∥Mt −Mt+1∥

which quantifies the change in pruning masks across epochs
and their role in the importance with respect to the loss land-
scape. This method aims to stabilize the the mask distance to
determine when the winning lottery ticket has been uncovered.
In our reconaissance, this method was praised within the
bidirectionality of multi-head-attention and thusly was seen
as a key method for creating lightweight vision mamba.

6) Gradient Pruning: Gradient pruning is a pruning
method that evaluates the strength of gradients during training
to decide which weights or structures (e.g., neurons, filters)
should be pruned. The intuition lies within the idea that
weights with less intense gradients contribute less to the
loss improvement and can be removed without significantly
affecting performance. While we did not have access to
sparse tensor cores for our implementation (where real training
improvements are realized in this niche), the goal was to
be exhaustive in the comparison of sparsity driven pruning
methods. The method we implemented was

importance = s ∗ ∥gw∥ (individual weight)

and which then was used to calculate the smallest k parameters
enabling finer control over the pruning process. This is useful
when the raw magnitudes of gradients are small or need to be
emphasized while ranking importance .

B. Mamba Vision

We propose and experiment with several modifications to
MambaVision to address its current limitations:

1) Shifted Window Attention: Drawing inspiration from
the Samba model, which enhances context length and

perplexity in language modeling through Sliding Win-
dow Attention (SWA), we hypothesize that integrat-
ing the Computer Vision task analogous Shifted Win-
dow Attention into MambaVision will significantly ex-
pand its receptive field. This modification is expected
to be particularly effective for tasks involving large,
high-resolution images, such as medical microscopy
and pathological image analysis like the USCF-Cancer
Dataset [22].

2) Incorporation of Relative Attention: To address gen-
eralization challenges associated with smaller datasets
such as CIFAR100, we introduce the relative attention
mechanism inspired by CoaT [11]. Relative attention
combines convolutional inductive biases such as locality
and translational equivariance, with the global receptive
field and input-independent weighting of self-attention,
as formulated in Equation (2). This was also inspired
and motivated by the fact that EfficientVMamba [16]
and MambaVision [8] have a very similar architecture
to CoaTNet, utilising convolutions in the first two stages
for fast and efficient feature extraction while maintaining
convolutional inductive biases in earlier stages.

ypre
i =

∑
j∈G

exp
(
x⊤
i xj + wi−j

)∑
k∈G exp

(
x⊤
i xk + wi−k

)xj (2)

where xi and xj are input features, wi−j is an input-independent
parameter of static value (used to represent the translationally equiv-
ariant depthwise convolution), G is the set of neighbouring positions,
and the softmax weighting captures input-adaptive similarity x⊤

i xj

adjusted by the translational equivariant wi−j

3) Integration of Registers: Inspired by [18], we experi-
ment with incorporating register tokens into the Vision
Transformer. These additional tokens serve as place-
holders for internal computations, addressing artifacts in
feature maps commonly observed in supervised and self-
supervised Vision Transformers (ViTs). Such artifacts,
are found in predominantly high-norm tokens in low-
informative background regions, and can be mitigated
by introducing these extra tokens, which are discarded
after encoding. This was achieved by appending a single
column of additional tokens to the end of the feature
map derived from the first two convolutional stages.



Fig. 7. Registers added to MambaVision’s Mixer and Self-Attention Blocks.

Specifically, the feature map in RC×H×W is transformed
into a feature map of dimensionality RC×H×W+1, us-
ing approach as shown in Fig. 7. This modification
ensures that valid convolutions can be computed for
the downsampling layers, while also adhering to the
principle introduced in [10], which demonstrated that
VisionMamba prefers evenly inserted registers through-
out the input token sequence. Following the approach
in [10], given n d-dimensional register vectors, we first
apply a linear layer to reduce their dimensionality by a
factor of r (here, 2), and then concatenate them into a
single vector of dimension n× d

r , which is used as the
global representation.

To implement these modifications, we propose GMam-
baVision (Figure 6), a generalized version of MambaVision.
GMambaVision combines convolutional layers for efficient
feature extraction in the first two stages, followed by a hybrid
approach in subsequent stages. Specifically, it employs ⌈N/2⌉
blocks of LSTM/RNN/SSM-based mixer blocks followed by
⌊N/2⌋ blocks utilizing self-attention variants tailored to com-
puter vision, such as shifted window attention and relative
attention.

Furthermore, we also experimented with attention-based
pooling and integrating ConvNeXt principles in Mambavision:

1) Mamba Vision: Attention-Based Pooling: Attention
pooling enhances standard pooling by dynamically assigning
importance to spatial features [23]. Unlike max pooling or
average pooling, attention pooling uses softmax-normalized
importance scores to aggregate features, retaining the most
critical information. This mechanism is particularly beneficial
for tasks requiring high spatial resolution, as it reduces the
risk of losing key spatial details during downsampling.

Our implementation of attention pooling involves computing
importance scores via a lightweight fully connected net-
work, followed by a weighted sum over spatial regions. This
mechanism is integrated within MambaVision’s hierarchical
structure to emphasize critical features at each stage of the
downsampling process.

2) Integrating ConvNeXt Principles into MambaVision:
ConvNeXt [24] principles were incorporated to enhance Mam-
baVision’s performance on CIFAR-100. The following modi-
fications were made:

• Kernel Size Reduction: Kernel sizes were reduced from
7 × 7 to 3 × 3 to better accommodate smaller image
resolutions in CIFAR-100.

• Mixup Augmentation: Mixup [25], a data augmentation
technique, was implemented to improve generalization by
creating linear combinations of image-label pairs.

• Layer Normalization: Batch normalization was replaced
with layer normalization [26] to ensure smoother gradient
flow and stability during training.

These adjustments collectively aimed to align MambaVi-
sion’s architecture with the smaller scale and unique chal-
lenges of the CIFAR-100 dataset, improving its ability to
capture both local and global features effectively.

IV. EXPERIMENTS AND RESULTS

This section outlines the experimental setup, methodologies,
and findings from evaluating Vision Mamba and its extensions.
We implemented various techniques to enhance the efficiency
and accuracy of Vision Mamba and tested them on standard
image datasets. Our focus remained on improving accuracy,
reducing computational overhead, and uncovering sparse sub-
network structures.

The experiments were conducted on both NYU’s Greene
HPC cluster and Google Colab environment using V100
GPUs. CIFAR-10 dataset [27] was used for initial evaluations.
This section directly presents the experimental steps, imple-
mentation details, and results.

A. Vision Mamba

When experimenting with Vision Mamba, we first focused
on finding a concrete set of parameters we could use across our
various experiments. This was done with the idea of finding
good overall results, and for us to be able to load models
saved from our previous experiments without any issues. Thus,
after a couple of trials and error, we configured the Vision
Mamba model with the following parameters for all of our
experiments:

• dim: 256 (feature dimension)
• dt rank: 32 (rank of the state-space parameter)
• dim inner: 256 (inner dimension for MLP layers)
• d state: 256 (state size for the SSMs)
• num classes: 10 (output classes for CIFAR-10)
• image size: 32 (input image resolution)
• patch size: 16 (patch size for embedding)
• channels: 3 (number of input channels)
• dropout: 0.1 (dropout rate for regularization)
• depth: 10 (number of VisionEncoderMambaBlocks)
This configuration ensures a balance between model ca-

pacity and computational efficiency, making Vision Mamba
suitable for experiments on both our small-scale datasets and
our limited hardware capabilities. However, it is important to
mention that some experiments yielded slightly better results
when setting dim, dim inner, and d state to 96. More on
details in our GitHub reposirtory.

Additionally, the training process uses the CIFAR-10
dataset, where images are preprocessed with normalization



to center pixel values around zero and converted to ten-
sors. The training and testing datasets are loaded with mini-
batches using DataLoader, with shuffling enabled for training
to ensure randomness. Both loaders utilize parallel data load-
ing (num workers=4) for efficiency, providing preprocessed
batches for model training and evaluation.

For experimental comparison, we first trained and evalu-
ated the unmodified Vision Mamba model on the CIFAR-10
dataset. This resulted in an accuracy of 66%, which serves as
our baseline metric.

The following experiments summarize our experiments and
findings:

• Squeeze-and-Excitation (SE): Integrating SE blocks at
the end of the VisionEncoderMambaBlock resulted in
accuracy ranging from 61% to 68%, depending on hy-
perparameter tuning. This might suggest that the perfor-
mance of SE modules within Vision Mamba is highly
sensitive to hyperparameter choices and requires careful
tuning for optimal results. Note that for our experiment,
the SE reduction factor was set to 4.

• MobileNetV2 Depthwise Convolutions: Replacing stan-
dard convolutions with depthwise convolutions slightly
improved accuracy to 68.3% . This suggests that replacing
standard convolutions with MobileNetV2-inspired depth-
wise convolutions might effectively reduce computational
overhead, according to Sandler et al. [5], while slightly
improving accuracy.

• Dynamic Pruning with Cosine Scheduler: Pruning
weights iteratively with a final sparsity of 60% improved
accuracy up to 70%. Critical layers, like the input and
output layers, were pruned less aggressively (50% less)
to maintain stability.

• Iterative Magnitude Pruning: Iterative magnitude prun-
ing realized a less robust loss than anticipated in [6]
with as low as a 3% loss in accuracy at the benchmark
60% sparsity for CIFAR100. Due to the fact that the loss
landscape of our baseline model accuracy was far sharper
than in the paper, the higher sparsity levels likely created
this accuracy disparagment.

• Early-Bird Lottery Ticket Hypothesis: The lottery
ticket search was conducted from epochs 2-6 where at
each of the epochs, a structured pruning of 50% as
applied in the paper was then trained to baseline model
realizing a nominal and general uniform accuracy loss of
2% to 2.5%

• Gradient Pruning: No constructive results were found
in this implementation.

B. Mamba Vision

The following experiments were conducted using the same
hyperparameters and training setup as in [28] to ensure
consistency and facilitate generalization on smaller datasets
like CIFAR100. The primary modifications to the baseline
MambaVision include:

1) Sliding Window Attention (SWA) and Relative At-
tention Blocks: In MambaVision, the last two stages

contain ⌊N/2⌋ self-attention blocks, operating on 1D
embeddings ∈ RC×W . These blocks were adapted to
work with 2D embeddings ∈ RC×H×W , enabling the
use of SWA or relative attention. For relative attention,
cached relative positional encodings were utilized to
compute multi-headed relative attention using equation
2 for each block. For SWA, the window size was halved
(using floor division) for each stage, with window shifts
of window width/2,window height/2 for every odd
block (2n + 1). Convolutional downsampling using a
3× 3 convolution with a stride of 2 was utilised at the
end of each stage, similar to the baseline architecture.

2) Incorporating Registers into Mamba and Attention
Blocks: The reduction factor r to reduce the dimension-
ality of register tokens was kept as 1 (no reduction) for
MambaVision-T to adhere to the paper [10].

Furthermore, additional experiments were conducted with
modified hyperparameters as follows:

• Mamba Vision: Attention-Based Pooling The intro-
duction of attention pooling to MambaVision marked a
significant shift in the model’s ability to retain critical
spatial information during downsampling. Starting with
the baseline MambaVision model trained on CIFAR-100,
which achieved a Top-1 accuracy of 71.71% and a final
training loss of 3.20, we replaced all standard pooling
layers with attention pooling mechanisms.
Initially, the model experienced a drop in performance.
During the first 10 epochs, training loss increased from
3.15 to 3.75, and Top-1 accuracy showed a slight decline.
This behavior was expected as the model adjusted to
the new pooling mechanism, which emphasized a dif-
ferent weighting scheme for spatial features. However,
by epoch 50, the loss began stabilizing, and accuracy
showed consistent improvement, the model achieved a
Top-1 accuracy of 74.55% and a final loss of 2.96. This
progression highlights the model’s ability to leverage
the attention pooling mechanism effectively, ultimately
surpassing the baseline performance. Attention pooling
proved particularly beneficial in retaining critical spatial
features, as evidenced by the consistent improvement in
Top-5 accuracy, which reached 93.52%.

• Integrating ConvNeXt Principles into MambaVision:
For ConvNeXt integration, we trained a modified ver-
sion of MambaVision incorporating reduced kernel sizes,
mixup augmentation, and layer normalization. The train-
ing configuration included a batch size of 16, a learning
rate of 1e−3, and weight decay of 1e−2. This experiment
aimed to evaluate the effectiveness of ConvNeXt-inspired
adjustments in improving accuracy while maintaining
efficiency.

C. Summary of Results

Table I provides a comprehensive summary of the exper-
imental results for the Vision Mamba model. Each exper-
iment is detailed with its corresponding accuracy and key
observations. This summary highlights the impact of various



TABLE I
SUMMARY OF EXPERIMENTAL RESULTS ON VISION MAMBA

Experiment Accuracy (%) Remarks
Original (Baseline) 66% Unmodified Vision Mamba architecture.
Iterative Magnitude Pruning 63% (typical)

68% (few cases)
Accuracy generally deteriorates to 63%, but occasionally
reaches 67%. Sensitive to pruning schedules.

Early-Bird Lottery 63.5% to 64% Accuracy loss between 2% and 2.5% observed consis-
tently at 60% sparsity.

Dynamic Pruning 70% Best performance observed at 60% sparsity using cosine
decay scheduling.

Squeeze & Excitation 61% to 68% Results varied depending on hyperparameter tuning,
showing sensitivity to overfitting.

MobileNetV2 67.5% to 68.3% Slight accuracy improvement while reducing computa-
tional costs.

architectural modifications and pruning techniques on model
performance, offering a clear comparison between approaches.

TABLE II
TOP-1 AND TOP-5 ACCURACIES FOR MAMBAVISION MODIFICATIONS

Model Top-1 Accuracy (%) Top-5 Accuracy (%)

Baseline MambaVision 71.71 92.37
MambaVision + Attention Pooling 74.55 93.52
MambaVision + ConvNeXt Principles 72.50 93.10

Table II summarizes the experimental results obtained with
the baseline MambaVision model and the introduced modifi-
cations. Attention pooling demonstrated the most significant
improvement in Top-1 accuracy, increasing from 71.71% to
74.55%, while applying ConvNeXt principles generated accu-
racy that did not deviate much from the base MambaVision
model.

TABLE III
INITIAL AND FINAL LOSSES FOR MAMBAVISION MODIFICATIONS

Model Initial Loss Final Loss

Baseline MambaVision 3.15 3.20
MambaVision 3.75 2.96
+ Attention Pooling
MambaVision 3.10 3.05
+ ConvNeXt Principles

Table III further discusses the behavior of the attention
pooling mechanism. The initial decline in performance, as
indicated by a higher training loss during the first 10 epochs,
can be attributed to the model adjusting to the new pooling
strategy, which diverges from the uniform feature weighting of
standard pooling. Over subsequent epochs, the loss stabilized,
and accuracy improved consistently, showcasing the model’s
ability to adapt to attention-based mechanisms. This suggests
that attention pooling requires a longer training horizon to fully
leverage its benefits.

Additionally, the ConvNeXt-inspired modifications pro-
vided improved regularization and training stability. While the

performance gains were not as pronounced as with attention
pooling, the reduced kernel sizes and mixup augmentation
effectively mitigated overfitting, particularly important for
smaller datasets like CIFAR-100.

Comparing these results with prior attempts at integrating
self-attention mechanisms, as explored in [8] and [16], it be-
comes evident that MambaVision’s hierarchical design already
incorporates efficient feature downsampling to a degree that
complements attention pooling. This aligns with findings from
CoAtNet [11], where relative attention provided improved
generalization on smaller datasets, benefiting from inductive
biases. Future work could explore the impact of attention pool-
ing and ConvNeXt principles on larger datasets like ImageNet
or high-resolution medical imagery, as the gains on CIFAR-
100 indicate potential scalability.

TABLE IV
CIFAR100 ACCURACY USING MAMBAVISION-T BASELINE

Self-Attention Mixer Registers Top-1
Block Block Accuracy

Vanilla Mamba - 61.26
Swin [29] Mamba - 61.25
CoaT [11] Mamba - 64.77
Vanilla Mamba ✓ 61.92

TABLE V
CIFAR100 ACCURACY QUANTISATION (TRANSFER LEARNING)

Quantisation Top-1
Method Accuracy

FP16 89.93
FP32 91.21
AMP 91.20

Table IV summarizes the results of experiments conducted
on CIFAR100. The integration of CoaT’s relative attention out-
performed both the Swin block and the vanilla self-attention



mechanism. This improvement is likely due to the added
inductive bias of relative attention, enhancing generalization
on smaller datasets. Notably, shifting to Shifted Window
Attention did not yield significant improvements, possibly
because the convolutional feature extraction stages effectively
downsample the spatial dimensions, making O(n2) complex-
ity self-attention manageable within the model. Perhaps if
the dataset had been of higher resolution, such as certain
medical datasets like USCF-Cancer Dataset [22] or COCO
[30], it might have been more appropriate to utilize the Swin
Transformer’s shifted window attention block. However, the
CoaT relative attention block performed well, likely due to
the inductive bias introduced by relative attention, which
enhances generalization capabilities [11]. This characteristic
was particularly beneficial when trained on a relatively small
dataset like CIFAR100. Table V demonstrates that reducing
precision to FP16 results in a drop in model performance when
quantized. Nevertheless, Automatic Mixed Precision (AMP)
proved to be an effective quantization strategy for transfer
learning on the CIFAR100 downstream task. This suggests
that significant training speedups can be achieved simply by
employing AMP for transfer learning with MambaVision.

V. CONCLUSION

This study explored enhancements to state-space models
for computer vision tasks, with a focus on Vision Mamba
and MambaVision. Our experiments demonstrated that Vim
exhibits robustness in its ability to adapt to pruning tech-
niques, with an average accuracy variation of approximately
3% across experiments. Notably, the integration of dynamic
pruning yielded the highest accuracy improvement, achieving
up to 70%, while maintaining computational efficiency. Other
methods, such as MobileNetV2-inspired depthwise convolu-
tions and Squeeze-and-Excitation blocks, highlighted trade-
offs between computational cost and accuracy gains (i.e.,
resulted in lower accuracy), indicating potential for further
fine-tuning.

These findings underscore the versatility of Vim as a
foundation for visual representation learning, particularly in
resource-constrained environments.

Building on these results, our work with MambaVision
demonstrates the potential for extending SSM-based models
to high-resolution image tasks, leveraging sliding window
attention, registers, and Relative Attention. We found Relative
attention to work notably well for generalisation when trained
on smaller datasets like CIFAR100, and thus, it could also
address the generalisation gap in medical datasets where data
scale is low.

Future research will aim to refine these methods further
and evaluate their applicability on larger datasets and more
complex vision tasks, particularly in medical imaging and
other domains requiring high-resolution processing.

A. Limitations

While our experiments provided valuable insights into Vim
and MambaVision, several limitations were encountered dur-

ing the study. Firstly, Vim was trained with varying numbers
of epochs and batch sizes across different experiments, which
may have introduced inconsistencies in the training setups
and affected direct comparisons of results. However, for the
final run, we standardized the settings as much as possible
to ensure consistency. In addition, we used different CPUs
and computational resources, which introduces variability in
training times and efficiency. These factors underscore the
need for more standardized experimental setups to ensure
consistent and reliable benchmarking.

Another limitation lies in the scale of the datasets used.
While CIFAR-10 [27] and CIFAR-100 [31] provided a suffi-
cient baseline for initial experiments, it is relatively small com-
pared to the large-scale datasets, that are commonly used for
training state-space models. This smaller dataset size may limit
the generalizability of our findings to more complex vision
tasks. Future efforts could focus on evaluating our methods
on additional small-scale datasets, such as ImageNette [32],
and/or larger and more complex datasets, including ImageNet-
1K [33], and high-resolution medical pathology datasets, such
as the UCSF cancer datasets [22]. These extensions will help
validate the scalability and effectiveness of our designs across
diverse and high-resolution domains.

While we experimented with advanced quantization
schemes such as SmoothQuant [34] and QuaRot [35], their
implementation posed significant challenges within the limited
timeframe. These methods either failed to train effectively
with MambaVision or did not perform well. Future research
will explore these and other robust quantization techniques
to enhance the speed and efficiency of structured state-space
models (SSM) for vision tasks.

Future work should address these limitations by incorporat-
ing standardized training configurations, leveraging more pow-
erful computational resources, and evaluating the models on
larger datasets to validate their scalability and generalizability.
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