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Abstract

Textual data is widely used in classification tasks, yet its potential for regression
remains underexplored. This study examines traditional and embedding-based
approaches to regression using text-derived features, applied to two real-world
datasets: Supreme Court decisions for predicting decision years and LinkedIn
job descriptions for forecasting salaries. Classical methods, such as TF-IDF and
bag-of-words, are compared with embeddings from large language models like
SBERT and T5. Regression models, including SVM (or SVR), MLP, and Gradient
Boosting are evaluated using metrics like R2, Root Mean Squared Error, and Mean
Absolute Error. Notably, the Supreme Court dataset achieved an MAE of ∼12 years
with Bigram BoW and ∼14 years with Doc2Vec embeddings. However, challenges
remain, as demonstrated by the LinkedIn dataset, where the best result had an
MAE exceeding $160,000 USD for salary prediction. We hope that our findings
highlight the promise and limitations of text-driven regression across real-world
applications.

1 Introduction

The use of textual data in machine learning has been widely studied in classification tasks [1], where
textual features are leveraged to categorize documents, detect sentiment, or perform topic modeling.
However, the potential of textual data for regression tasks remains underexplored. Regression tasks
involve predicting continuous values, and require a strong understanding of textual information to
map it onto numeric values. This study seeks to address this gap by investigating if and how textual
features can be effectively utilized for regression tasks across different domains.

Traditional approaches to text representation, such as Bag-of-Words (BoW) and Term Frequency-
Inverse Document Frequency (TF-IDF), offer interpretable and computationally efficient [2] methods
for transforming text into numeric features. Despite their widespread use in classification [3][4][5][6],
these methods have seen limited application in regression, where continuous predictions often require
richer and more refined feature representations. By evaluating these classical techniques in regression
settings, this research explores their adaptability to numeric prediction problems.

With the arrival of pre-trained large language models (LLMs) and embedding-based approaches,
there has been a paradigm shift in how textual data is represented and used. Embeddings generated by
models like T5 and BERT encode semantic and syntactic information into dense vectors, capturing
intricate relationships within the text. Recent studies, such as those of Tang et al. (2024) [7] and
Nguyen et al. (2024) [8], have shown that these embeddings can be used effectively for some
regression tasks. This study builds on these and more insights by comparing embedding-based
methods with traditional approaches to assess their suitability for regression tasks in practical real-
world applications.

To ground our investigation, we focus on two datasets representing distinct challenges: (1) the
LinkedIn Job Postings dataset [9], which requires the prediction of maximum salary based on job



descriptions, and (2) the Supreme Court Decisions (SCOTUS) dataset [10], which involves estimating
the year of a legal decision based on textual content.

2 Related Work

To contextualize this research, we review related work on classical text representations and embedding-
based approaches for regression tasks, highlighting existing methodologies.

As declared earlier, most text-based machine learning applications focus on classification tasks, often
using complex deep learning models for feature extraction, such as transformers and embeddings.
However, regression tasks using textual data remain relatively underexplored, particularly in the
context of classical NLP approaches. Studies on feature extraction techniques such as Bag-of-Words
(BoW) and Term Frequency-Inverse Document Frequency (TF-IDF) are usually centered on classifi-
cation tasks [11][12][13], leaving gaps in understanding their applicability for continuous prediction
problems. Smoothing techniques for BoW, such as Laplace smoothing and add-k smoothing, have
been applied in probabilistic models [14][15] but have seen limited exploration in non-probabilistic
regression tasks, such as ridge regression or gradient-boosted decision trees.

Doc2Vec, introduced as an extension of Word2Vec [16], generates dense vector representations of
entire documents rather than individual words [17]. This method has shown promise in capturing
semantic and syntactic relationships within text, making it a natural candidate for tasks requiring
document-level understanding [18]. While extensively used in classification and clustering, its
potential for regression tasks remains underexplored. By encoding textual data into fixed-length
representations, Doc2Vec facilitates regression analysis, particularly in applications where document
context plays a critical role.

In addition, recent efforts by Tang et al. (2024) [7] and Nguyen et al. (2024) [8] have demonstrated
the potential of embedding-based approaches for regression tasks. These studies highlight that
embeddings derived from large language models (LLMs) capture rich semantic information, making
them well-suited for numeric prediction tasks. Tang et al. [7] showed that embeddings from models
such as T5 and Gemini provide robust representations, outperforming traditional hand-crafted features
in certain regression scenarios. Nguyen et al. [8] proposed the "Embed-then-Regress" framework,
which utilizes embeddings to map textual inputs to fixed-length vectors, enabling flexible and effective
regression across diverse domains, including combinatorial optimization and hyperparameter tuning.
Although these studies offer valuable insights, their publication occurred relatively late in our
project’s timeline, limiting our ability to fully explore their proposed methodologies. Nevertheless,
these insights directly influenced our approach to feature selection, particularly the inclusion of T5
embeddings.

These advancements highlight the growing importance of embeddings in regression tasks. Building on
insights from both classical and embedding-based approaches, our study evaluates their effectiveness
by applying these methods to two practical datasets. This allows us to assess their performance and
explore their applicability in real-world scenarios.

3 Method

To effectively represent textual data for regression tasks, we employed a diverse set of feature
extraction methods, including traditional count-based techniques such as Bag-of-Words (BoW) and
TF-IDF, as well as modern embedding-based approaches such as Doc2Vec, SBERT all-MiniLM,
Paraphrase-MiniLM, and T5. Each method was selected for its ability to capture different and relevant
aspects of textual information, as detailed in the following subsections.

3.1 Traditional Text Representation Techniques

3.1.1 Bag of Words (Unigram and Bigram Models)

The Bag of Words model is one of the simplest and most widely used techniques for feature extraction
in text classification. It represents a text as a collection of words, disregarding grammar and word
order while preserving frequency information. Each unique word or token is treated as a feature,
and the text is encoded as a sparse vector with counts of each word. In unigram models, features
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correspond to single words, while bigram models consider sequences of two consecutive words,
capturing some contextual information. Thus, the inclusion of bigrams can improve performance in
tasks where word order or phrase structure is important.

Unigram and bigram BoW models have been used extensively in text classification tasks. For instance,
Pang et al. [3] demonstrated their utility in sentiment classification, showing that bigram models
often outperform unigrams in capturing contextual nuances. Similarly, Joachims [4] used unigram
features for text categorization with Support Vector Machines, highlighting the effectiveness of sparse
high-dimensional representations in classification.

3.1.2 TF-IDF (Term Frequency-Inverse Document Frequency)

TF-IDF builds upon the Bag of Words model by weighting each term based on its frequency in
the document (term frequency, TF) and its rarity across the corpus (inverse document frequency,
IDF)[19]. This weighting scheme helps reduce the impact of common words (e.g., stop words) that
are less informative for distinguishing between classes. The TF-IDF score for a term t in a document
d is defined as:

TF-IDF(t, d) = TF(t, d) · IDF(t),
where

IDF(t) = log
N

1 + nt
,

N is the total number of documents in the corpus, and nt is the number of documents containing
term t.

TF-IDF has proven effective in numerous text classification applications. For example, Sebastiani [5]
used TF-IDF to improve performance in automated text categorization, demonstrating its ability to
highlight discriminative terms. Additionally, Lewis [6] employed TF-IDF features in Naive Bayes
classifiers, achieving robust results in spam detection and topic classification.

3.2 Embeddings

3.2.1 Doc2Vec

Doc2Vec [20], an extension of Word2Vec, generates dense vector representations of entire documents
instead of individual words [17]. By training the model to predict words in a context or paragraph
based on document-level representations, Doc2Vec captures both semantic and syntactic information
[18], making it a suitable choice for tasks requiring an understanding of the overall document. It also
generates compact fixed-length vectors, facilitating the use of regression models.

3.2.2 SBERT (Sentence-BERT)

SBERT [21] is a modification of the BERT architecture fine-tuned to generate high-quality sentence
embeddings. It employs a Siamese or triplet network structure to compare sentence pairs during
training, optimizing for semantic similarity tasks using contrastive or triplet loss. SBERT is highly
efficient in producing embeddings, making it well-suited for applications such as sentence similarity,
semantic search, clustering, and textual entailment. Its embeddings are specifically designed for
capturing semantic similarity, enabling rapid comparisons using cosine similarity. However, SBERT’s
flexibility is somewhat limited outside its fine-tuned domain, and the contextual quality of its
embeddings may degrade for sentences with significantly different lengths or structures. For our
experiments, we worked with the all-MiniLM-L6-v2 SBERT model.

3.2.3 Paraphrase-Based Embeddings

Paraphrase-based embeddings are generated using transformer-based models, such as BERT or
RoBERTa, trained specifically on paraphrase datasets. These models are optimized to detect whether
two sentences are paraphrases, ensuring that embeddings for similar sentences are closer in the
vector space. Paraphrase-based embeddings are highly effective for tasks like paraphrase detection
and similar sentence retrieval, excelling at identifying nuanced rephrasings or logical equivalences.
However, their general-purpose applicability is more limited compared to SBERT or T5, as their
performance is closely tied to the quality of the paraphrase datasets used for training.
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3.2.4 T5 (Text-to-Text Transfer Transformer)

The T5 model [22] is a versatile sequence-to-sequence model that treats all NLP tasks as a "text-to-
text" problem, capable of generating embeddings as a by-product of its encoding process. While its
primary design is not for embedding generation, the embeddings produced by T5 are contextually
rich due to pretraining on a diverse text corpus using a denoising objective. T5 is highly flexible and
can be fine-tuned [23] for a wide range of NLP tasks, such as text summarization, question answering,
and more. However, it is computationally expensive compared to SBERT, and its embeddings may
require additional fine-tuning to achieve similar alignment for semantic similarity tasks. Despite this,
T5’s generalization capabilities make it a strong choice for diverse and generalized NLP tasks.

3.3 Regression Models

We have worked with three regression models to evaluate the effectiveness of different textual feature
extraction techniques. These models were chosen for their ability to handle diverse data distributions
and capture both linear and non-linear relationships in the data.

For all the models described in this subsection, hyperparameter tuning was performed following a
two-stage process:

1. Random Search: To broadly explore combinations of key hyperparameters.

2. Grid Search: To "fine-tune" the most promising combinations identified by the random
search.

3.3.1 SVM (Support Vector Machine)

Support Vector Machine (SVM), often applied to both classification and regression tasks, seeks to
find a hyperplane that minimizes error while balancing model complexity and prediction accuracy.
We chose SVM (SVR for regression) because of its effectiveness with high-dimensional, sparse text
features ( such as those generated by Bag-of-Words and TF-IDF), and its flexibility in capturing both
linear and non-linear relationships through kernel functions [24].

We experimented with multiple kernel types, including linear and radial basis function (RBF) kernels,
to accommodate the high-dimensional and sparse nature of text features while also exploring potential
non-linear relationships. As mentioned, hyperparameter tuning was conducted in two stages tuning
the following: regularization parameter C, margin of tolerance ϵ, and Kernel-specific parameters
(e.g., Linear Kernel, RBF, gamma).

3.3.2 MLP (MultiLayer Perceptron)

The MultiLayer Perceptron (MLP) was selected as a regression model for its ability to capture non-
linear relationships in high-dimensional data. The decision to also experiment with MLP was inspired
by Tang et al. (2024) [7], which highlights the suitability of MLPs for processing high-dimensional
embeddings derived from textual data. Their ability to model non-linear relationships and their
compatibility with embedding-based feature spaces make them a strong candidate for regression
tasks.

The architecture of the MLP used in our experiments is as follows:

• Input layer: Accepts the feature vector of dimensionality corresponding to the extracted text
features.

• Two hidden layers: The first layer contains 128 neurons, and the second layer has 64 neurons.
Both use ReLU activations to introduce non-linearity.

• Dropout layer: A dropout rate of 0.3 is applied after the first hidden layer to prevent
overfitting.

• Output layer: A single neuron outputs the predicted value.

As with the previous regressor, we performed parameter tuning on the following hyperparameters:
learning rate, dropout rate, hidden layer sizes.
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3.3.3 Gradient Boosting

Gradient Boosting is an implementation of gradient-boosted decision trees designed for speed and
performance. It builds an ensemble of weak learners (decision trees) iteratively to minimize a
specified loss function. Gradient Boosting was chosen based on its demonstrated effectiveness
in regression tasks involving high-dimensional data [7], as well as it’s ability to handle complex
relationships.

We used Gradient Boosting’s regression module and tuned the following hyperparameters: learning
rate, max depth, subsampling rate.

4 Dataset

Having established the embedding models and regression techniques, we now introduce the datasets
used to test these methods, highlighting their distinct challenges and applications.

Our study utilizes two distinct datasets, the first one, the LinkedIn Job Postings dataset [9], provides
a practical real-world scenario for salary forecasting. This model can assist job seekers in estimating
potential salaries before engaging in lengthy and tedious application and interview processes. It can
also help employers to properly gauge the competitiveness of their compensation.

The second one, the Supreme Court Decisions (SCOTUS) dataset [10], offers an opportunity to
explore the temporal evolution of formal legal language. Additionally, it demonstrates a potential
practical application for historians or researchers in estimating the year of authorship based on old,
partially preserved documents in a wide variety of domains.

4.1 LinkedIn Job Postings Dataset

The LinkedIn Job Postings dataset [9], sourced from Kaggle, contains a collection of job postings that
includes detailed textual and metadata fields. This dataset provides a robust foundation for analyzing
the linguistic and contextual attributes of professional job descriptions, with the aim of predicting
salary information.

4.1.1 Content

Each record in the dataset includes the job description, title, and location, alongside additional
metadata fields such as company name and employment type. The textual content of job descriptions
captures domain-specific language, skills requirements, and employment terms. Some data cleaning
was required before modeling could begin, including annualizing hourly or monthly salaries and
removing missing values.

4.1.2 Modeling Task

The predictive modeling task focuses on estimating the minimum and maximum salary for each job
posting. The model leverages textual features (e.g., key phrases, industry-specific terminology) and
contextual variables (e.g., job title, geographic location) to infer these continuous numeric targets.

4.1.3 Challenges

The dataset exhibits variability in text length, structure, and specificity, reflecting the diversity of
industries and roles. It also suffers from an uneven distribution of salary ranges across industries and
geographic locations. However, we hypothesized that there would be some signal between natural
language descriptions of tasks and responsibilities and the numerical value of annual salary.

4.2 Supreme Court Decisions Dataset

The Supreme Court Decisions dataset [10], hosted on GitHub as part of the SCOTUS project, is
a compilation of text and metadata from historical U.S. Supreme Court decisions. This dataset is
particularly valuable for analyzing legal language and its evolution over time.
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4.2.1 Content

Each record consists of the full text of a Supreme Court opinion, along with metadata fields such as
the case name, decision date, and authoring justice. The textual data reflects formal legal reasoning,
structured argumentation, and domain-specific terminology.

4.2.2 Modeling Task

The primary task involves predicting the year of the decision based on the text of the opinion. This
task captures the temporal evolution of legal language and reasoning, necessitating the model’s ability
to discern subtle linguistic patterns that correlate with the period of authorship.

4.2.3 Challenges

The dataset presents unique challenges, such as the presence of semantic drift, where the meaning
and usage of certain legal terms change over time. Additionally, imbalances in the distribution of
decisions across years require careful handling during training and evaluation. Feature extraction
techniques, such as bag-of-words and n-grams, are instrumental in encoding the textual data, while
smoothing techniques address sparsity in the high-dimensional feature space.

4.3 Comparative Utility

Both datasets offer distinct yet complementary challenges for text-based regression modeling. The
LinkedIn Job Postings dataset emphasizes practical applications in economic forecasting, while the
Supreme Court Decisions dataset provides insights into temporal patterns in formal legal discourse.
Together, they enable a comprehensive evaluation of classical regression techniques in diverse
real-world and domain-specific contexts.

5 Experiments

The experiments were designed to evaluate the performance of various text feature extraction tech-
niques combined with regression models on two datasets: (1) the LinkedIn Job Postings dataset,
where the target variable is the maximum salary, and (2) the Supreme Court Decisions dataset, where
the target variable is the year of the decision. To assess performance, we’ll use the following metrics:
R2, Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE)

5.1 LinkedIn

For the LinkedIn dataset, we explored different combinations of text features to identify the most
informative set for predicting maximum salary. We experimented with the following combinations:

• (title + description + location)
• description
• title
• (title + description)

Our initial findings indicated that embedding the job title alone using the T5 model gave the best
performance in terms of RMSE. Table 1 shows the RMSE scores obtained by applying embeddings
and text vectorization to the combination of features: (title + description + location) followed by train-
ing three different regression models on the resulting featurized data. Note that t5_total_embedding
refers to applying the T5 model for embedding to feature (title + description + location), and
t5_title_embedding refers to applying the T5 model for embedding to the feature "title". The same
applies for Paraphrase embedding.

To maintain a concise and focused analysis, we present in Figure 1 the detailed results of using
Gradient Boost. We chose to show only the results for this regression model because, as seen in
Table 1, this is the model that achieved the lowest RMSE.

Although the results are still quite poor, it is interesting that embeddings derived from job title
alone outperformed the concatenation of title, description and location. This implies that the job
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Table 1: RMSE scores for different text vectorization and embeddings models for Linkedin dataset
when using SVM (i.e. SVR), MLP, and Gradient Boosting regressor models

Model Name SVM MLP GBoost
bigram 3,621,106 9,176,577 5,270,339
t5_title_embedding 7,126,253 4,369,613 3,311,473
paraphrase_title_embedding 7,708,288 6,853,952 7,207,586
t5_total_embedding 4,520,921 3,962,114 12,414,734
smoothed_unigram 3,510,822 8,406,475 9,719,562
paraphrase_total_embedding 3,609,581 8,127,094 9,126,607
unigram 9,698,041 3,455,958 7,830,285
tf-idf 3,129,469 6,452,979 7,571,658
all-MiniLM-L6-v2 3,620,362 5,601,687 7,583,013
doc2vec 3,621,309 3,489,431 3,357,549

Figure 1: R2, MAE, and RMSE scores for Gradient Boost with the different embedding methods on
the LinkedIn dataset

descriptions in this dataset were noisier than the one or two tokens in the titles. Indeed, a list of a job
responsibilities might have a more tenuous relationship with salary compensation than words like
"senior", "partner", "entry" or "technician". However, we can see that the selection of text does not
completely eclipse the importance of the embedding model: the paraphrase embedding of all available
text features (i.e. paraphrase_total_embedding) outperformed the corresponding t5 embedding in
most cases, despite the fact that t5 provided the best embedding when applied to title alone.

5.2 SCOTUS

We applied a similar experimental framework to the SCOTUS dataset, adapting the feature extraction
methods to its specific characteristics (i.e. embedding was applied only to the "text" feature) and
exploring their impact on prediction performance. In Table 2 we can observe the RMSE of using
multiple embedding techniques with SVM, MLP, and Gradient Boosting.

Again, to maintain a concise and focused analysis, we present in Figure 2 the detailed results of using
Gradient Boost. As seen in Table 2, this is the regression model was the one that achieved the lowest
RMSE.

The results from the SCOTUS dataset experiments reverse the conclusions of the linkedin dataset
experiments: vectorization techniques relying on simple counts and ratios (like bigrams and TF-IDF)
significantly outperformed more complex embedding models. We can hypothesize that the presence
or absence of certain words has a much stronger relationship to the year that certain text was written
then any other linguistic property. This follows some intuitive understanding of linguistic trends
falling in and out of fashion as years progress. An area of future research might investigate whether
this property holds in other domains like literature and journalism.
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Table 2: RMSE scores for different text vectorization and embeddings models for SCOTUS dataset
when using SVM (i.e. SVR), MLP, and Gradient Boosting regressor models

Model Name SVM MLP GBoost
bigram 30.79 532.31 18.38
t5_embeddings 47.01 907.18 40.33
paraphrase_embedding 30.36 36.91 43.40
smoothed_unigram 48.40 247.62 22.27
unigram 33.20 543.08 20.40
tf-idf 26.78 53.55 22.68
all-MiniLM-L6-v2 48.92 456.47 41.76
doc2vec 39.70 296.91 24.64

Figure 2: R2, MAE, and RMSE scores for Gradient Boost with the different embedding methods on
the SCOTUS dataset

6 Conclusion and Future Work

This study explored regression models leveraging textual features to predict continuous outcomes
across two datasets: the LinkedIn job postings dataset for salary prediction and the Supreme Court
decisions dataset for year prediction. While the Supreme Court dataset yielded promising results, with
a MAE of around 12 years using Bigram BoW (see Figure 2), the LinkedIn dataset faced challenges,
including weak correlations between text and salaries. Despite embeddings like title-based T5
performing better (with an MAE exceeding $160,000 USD as shown in Figure 1), the LinkedIn
dataset remained difficult to model probably due to inherent noise and skewness toward lower salaries
($22,000 USD and below).

Our findings emphasize that the success of text-driven regression is highly task-dependent. Count-
based methods like BoW and TF-IDF excelled for legal language tasks, likely due to the stable
and patterned nature of the text. And, as mention in the previous section, this aligns with the
intuitive notion that linguistic trends evolve over time, with certain patterns and expressions gaining
or losing popularity as years go by. In contrast, embedding-based approaches offered only limited
improvements for complex datasets like LinkedIn, highlighting the need to carefully align feature
extraction techniques with dataset characteristics.

While these findings provide valuable insights, they also highlight areas for improvement and further
exploration. Future work should focus on refining dataset scope, such as narrowing the LinkedIn
dataset to specific job sectors or salary ranges, to improve signal strength. Additionally, exploring
more complex models, including deeper neural networks and fine-tuned embeddings, could enhance
predictive power for both applications evaluated in this work. In addition, investigating alternative
target variables, such as salary ranges (e.g., max-min), may also yield better insights and improve
model interpretability for the LinkedIn dataset.
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